Многозначные числа в обучении математике младших школьников

Статьи об образовании » Нумерация многозначных чисел в начальном курсе математики » Многозначные числа в обучении математике младших школьников

Страница 4

В основе методики этого вопроса лежат наблюдение и сравнение: учащиеся наблюдают за тем, как изменяются числа, когда к ним приписывают или отбрасывают нули, сравнивают исходные и полученные числа и выводят соответствующее правило. После этого вводятся знаки умножения и деления, решаются примеры и задачи: 54 000: 1 000; 3 800 100 и т.п.

В содержание темы "Нумерация", как уже сказано выше, входит вопрос о преобразовании числа, которое сводится к двум операциям - к раздроблению единиц какого-либо разряда в единицы низшего разряда и к выделению из данного числа всех единиц какого-либо разряда.

В методическом отношении это сложный вопрос, и решается он по-разному. Приведем здесь один из способов объяснения. На конкретных примерах выясняется, что в числе, состоящем из круглых десятков, единиц в 10 раз больше, чем десятков; в числе, состоящем из круглых сотен, единиц в 100 раз больше, чем сотен, и т.д. Поэтому, если требуется, например, 36 десятков выразить в единицах, достаточно 36 увеличить в 10 раз; это можно сделать путем приписывания к числу одного нуля справа. А если требуется узнать, сколько единиц в 36 сотнях, достаточно 36 увеличить в 100 раз, что можно сделать, приписав к числу справа два нуля, и т.д.

Отсюда правило: чтобы узнать, сколько единиц в числе, состоящем из десятков, надо приписать к числу справа один нуль; чтобы узнать, сколько единиц в данном числе сотен, надо приписать к числу справа два нуля и т.д.

Точно так же на отдельных примерах можно показать учащимся, что, если требуется, например, узнать, сколько десятков в числе 480, достаточно отбросить в нем нуль. Получим 480 = 48 дес. А если нужно узнать, сколько сотен в числе I 200, достаточно отбросить два нуля. Получим: 1 200 = 12 сот.

Сколько десятков в числе 4 735? Рассуждаем так: десятков не будет только в разряде единиц, поэтому отбрасываем единицы; оставшиеся цифры обозначают число, которое покажет, сколько всего десятков в данном числе (473 десятка). Действительно, в 4 тысячах 40 сотен, а в 40 сотнях 400 десятков. В 7 сотнях 70 десятков, а всего будет: 400 дес. + 70 дес. + 3 дес. = 473 дес.

Точно так же объясняется, сколько сотен, например, во всем числе 34 815. Сотен нет только в разрядах десятков и единиц; отбрасываем их. Оставшееся число (348) покажет, сколько всего сотен в числе (348 сот). Отсюда вытекает правило: чтобы узнать, сколько всего сотен в данном числе, надо отбросить в нем десятки и единицы и прочитать оставшееся число, как число сотен.

После изучения нумерации шестизначных чисел вводится класс миллионов и девятизначные числа. Порядок работы примерно тот же, что и над классом тысяч и шестизначными числами: образование трех новых разрядных единиц-миллиона, десятка миллионов, сотни миллионов, объединение их в класс миллионов, в котором счетной единицей является миллион (новая классная единица), перенос на этот класс всего того, что детям известно о классе единиц и классе тысяч; рассмотрение нумерационной таблицы, в которой представлены три класса, использование этой таблицы для первоначального ознакомления учащихся сначала со структурой числа III класса без нулей и с нулями в пределах этого класса (632 млн., 370 млн., 800 млн), а потом со структурой девятизначных чисел, с их чтением и записью в таблице.

При изучении нумерации девятизначных чисел проводятся упражнения: в образовании чисел (преимущественно из классных единиц, например: "Напишите число, которое содержит 158 ед. III класса, 840 ед. II класса и 256 ед. I класса"), в разложении чисел без нулей и с нулями на месте отсутствующих единиц, как отдельных разрядов, так и целого класса, в записи всех возможных чисел с помощью данных цифр (например: "С помощью цифр 3, 8, 5 запишите все возможные трехзначные числа так, чтобы одна и та же цифра в числе не повторялась"), в сравнении чисел, в усвоении натуральной последовательности чисел за пределами миллиона, в преобразовании чисел как отвлеченных, так и именованных.

Страницы: 1 2 3 4 5


Прочие статьи:

Основные направления работы по развитию мелкой моторики с детьми младшего дошкольного возраста с нарушением речи
Очень важной частью работы по развитию мелкой моторики являются «пальчиковые игры». Игры эти очень эмоциональны, увлекательны. Они способствуют развитию речи, творческой деятельности. «Пальчиковые игры» как бы отображают реальность окружающего мира - предметы, животных, людей, их деятельность, явле ...

Учебно-тематический план раздела «Художественная обработка ткани»
Учащиеся должны знать: - возможности техники вязания на спицах, материалы и инструменты; - свойства шерстяных, пуховых, хлопчатобумажных и шелковых нитей; правила подбора спиц для вязания; - условные обозначения, применяемые при вязании на спицах; - технология вязания на двух и пяти спицах; - спосо ...

Теоретические аспекты формирования активности школьника в обучении
К понятию "теория" педагоги-исследователи подходят с большим уважением и вместе с тем очень осторожно. Это связано с традиционным мышлением ученого, когда он относит к теории только фундаментальные системы знаний. В педагогике же принято считать, что система знаний размыта и часто раствор ...

Меню сайта

Copyright © 2026 - All Rights Reserved - www.covereducation.ru