Решение алгебраических уравнений в детском саду с помощью взвешивания шоколадок

Страница 2

После этого можно изучить решение уравнений:, решение которых приводит к новым количествам: квадрируемым и неквадрируемым. Этих двух примеров вполне достаточно, чтобы ребенок, тяготеющий к математике, заинтересовался общей проблемой квадрируемости конечных количеств. Такой проблемный подход позволяет на решении уравнений познакомиться с иррациональными числами. Кроме того, ребенок находит квадрат числа когда считает кубики в квадрате и извлекает квадратный корень когда считает палочки в квадрате.

Решение алгебраического уравнения в натуральных числах

Не ограничивая общности, мы рассмотрим более простое уравнение. Из способа решения этого уравнения станет понятен общий метод. Положим 16 кубиков на правую чашку весов. Затем поставим вопрос: Нужно найти такие одинаковые по величине 2 куба из квадратов, чтобы, положив их на левую чашку весов, весы были в равновесии. Из скольких квадратов сложены эти кубы? Понятно, что решением будет число 2 – количество квадратов в кубе. Теперь рассмотрим уравнение и вопрос поставим тот же самый. Выясняется что таких кубов нет вообще. Итак, в одном случае равновесие получается, а в другом не получается. Рассмотрим более общее уравнение. Попытаемся понять: когда такие кубы найти можно и когда нельзя. Оказывается, что таких случаев много и они приводят ребенка к тому, что в одних случаях равновесие достигается, а в других не достигается. В этом смысле, уравнение не всегда имеет решение. Значит, прежде чем его решать нужно выяснить: имеет оно решение или нет?

Так ребенок приходит ко второй проблеме: составление конечного количества в форме куба. Решение уравнения породило 2 вида конечных количеств: кубируемых (элементы количества образуют куб) и некубируемых (элементы количества не образуют куб). Заметим, что никакими символами мы не пользовались опять и пришли к иррациональным числам, которые представляют некубируемые количества.

После этого можно изучить решение уравнений:, решение которых приводит к новым количествам: кубируемым и некубируемым. Этих двух примеров вполне достаточно, чтобы ребенок, тяготеющий к математике, заинтересовался общей проблемой кубируемости конечных количеств.

Такой проблемный подход позволяет на решении уравнений познакомиться с иррациональными числами уже нового типа. Кроме того, ребенок находит куб числа когда считает кубики в кубе и извлекает кубический корень когда считает квадраты в кубе.

Представление о квадрируемости и кубируемости конечного количества подводят ребенка к проблеме меры: измерять величину плоских и объемных тел с помощью единиц измерений – кубиков.

1. В статье впервые дан содержательный смысл математического уравнения.

2. В статье приводится оригинальный конструктор, который становится средством конструирования знаний о делимости конечных количеств, а также их квадрируемости и кубируемости.

3. В статье рассмотрены конкретные примеры, представляющие пропедевтику алгебры в детском саду.

Страницы: 1 2 


Прочие статьи:

Бережливость как составляющая нравственного воспитания младших школьников
Экономическое воспитание следует начинать еще в начальной школе, так как данная возрастная ступень - своеобразный "фундамент" формирования личности. Бережливость, организованность, рачительность и другие качества человека следует воспитывать с детских лет. Следовательно, процесс экономиче ...

Дизайн-проект интерьера игровой комнаты
Итак, мы сформулировали для себя задачу – разработать интерактивный, функциональный, удобный и практичный интерьер детской игровой комнаты младшей группы в ДОУ, который обладал бы эстетической привлекательностью, легко видоизменялся, отвечал санитарно-гигиеническим нормам, принятым в отношении дете ...

Особенности фонетико-фонематических расстройств у дошкольников со стертой дизартрией
Среди детей дошкольного возраста распространенным речевым нарушением является стертая дизартрия, которая имеет тенденцию к значительному росту. Она часто сочетается с другими речевыми нарушениями, например, с заиканием, общим недоразвитием речи. В настоящее время эта речевая патология рассматривает ...

Меню сайта

Copyright © 2020 - All Rights Reserved - www.covereducation.ru