Решение алгебраических уравнений в детском саду с помощью взвешивания шоколадок

Страница 1

Сейчас воспитатели детских садов будут поражены возможностям чашечных весов. Чтобы учителя математики понимали о чем идет речь, авторы приводят также логическую форму математического уравнения в символическом виде.

Возьмем кубик со стороной 1см., который сделан из дерева. Он представляет модель шоколадной дольки. Можно его покрасить в коричневый цвет. Будем склеивать кубики вместе, создавая из них палочки размером от 2см. до 10 см. Затем будем склеивать между собой палочки, создавая из них квадратные и прямоугольные шоколадки. Наконец, склеивая между собой квадратные и прямоугольные шоколадки, создадим кубические шоколадки и брусковые шоколадки. Конструктор к работе готов.

Теперь мы начнем решать различные алгебраические уравнения с помощью весов. Все время мы будем уравнивать правую чашку весов с помощью левой чашки.

Не ограничивая общности, мы рассмотрим более простое уравнение . Из способа решения этого уравнения станет понятен общий метод.

Авторы будут пользоваться обычными чашечными весами. Вместе с тем, весы можно сделать любые. Главное, чтобы в них была левая и правая части. Положим 4 кубика на правую чашку весов. Затем поставим вопрос: нужно найти такие одинаковые по величине 2 палочки из кубиков, чтобы, положив их на левую чашку весов, весы были в равновесии. Из скольких кубиков сложены эти палочки?

Понятно, что решением будет число 2 – количество кубиков в палочке. Теперь рассмотрим уравнение и вопрос поставим тот же самый. Выясняется, что таких палочек нет вообще. Итак, в одном случае равновесие получается, а в другом не получается.

Рассмотрим более общее уравнение . Попытаемся понять: когда такие палочки найти можно и когда нельзя. Оказывается что таких случаев много и они приводят ребенка к тому, что в одних случаях равновесие достигается, а в других не достигается. В этом смысле, уравнение не всегда имеет решение. Значит, прежде чем его решать нужно выяснить: имеет оно решение или нет? Так ребенок приходит к первой проблеме: делимости на 2 равные части конечного количества. Решение уравнения породило 2 вида конечных количеств: делящиеся на 2 равные части и неделящиеся. Заметим, что никакими символами мы не пользовались. После этого, можно изучить решение уравнений: , решение которых приводит к новым количествам: делящимся и неделящимся на 3 равные части. Этих двух примеров вполне достаточно, чтобы ребенок, тяготеющий к математике, заинтересовался общей проблемой делимости количества на равные части. Такой проблемный подход позволяет на решении уравнений познакомиться с делимостью конечных количеств на равные части раньше чем будет изучена делимость натурального числа.

Решение алгебраического уравнения в натуральных числах

Не ограничивая общности, мы рассмотрим более простое уравнение. Из способа решения этого уравнения станет понятен общий метод.

Положим 8 кубиков на правую чашку весов. Затем поставим вопрос: Нужно найти такие одинаковые по величине 2 квадрата из кубиков, чтобы, положив их на левую чашку весов, весы были в равновесии. Из скольких палочек сложены эти квадраты? Понятно, что решением будет число 2 – количество палочек в квадрате. Теперь рассмотрим уравнение и вопрос поставим тот же самый. Выясняется что таких квадратов нет вообще. Итак, в одном случае равновесие получается, а в другом не получается.

Рассмотрим более общее уравнение. Попытаемся понять: когда такие квадраты найти можно и когда нельзя. Оказывается, что таких случаев много и они приводят ребенка к тому, что в одних случаях равновесие достигается, а в других не достигается. В этом смысле, уравнение не всегда имеет решение. Значит, прежде чем его решать нужно выяснить: имеет оно решение или нет? Так ребенок приходит ко второй проблеме: составление конечного количества в форме квадрата. Решение уравнения породило 2 вида конечных количеств: квадрируемых (элементы количества образуют квадрат) и неквадрируемых (элементы количества не образуют квадрат). Заметим, что никакими символами мы не пользовались опять и пришли к иррациональным числам, которые представляют неквадрируемые количества.

Страницы: 1 2


Прочие статьи:

Теория соответствия образования уровню развития общества – 70-80 гг. ХХ века
Идеи: 1). Образование – это зеркало общества (отражает уровень современности). 2). Главная функция образования – это воспроизводство существующего общества. Сначала возрождение экономики, промышленности, а потом результаты отразятся на школе. Идеи: 1). Образование яв-ся средством развития личности. ...

Инновационные технологии в образовательном процессе и их влияние на формирование базовых компетенций
В последнее время в нашей стране происходит реформа системы школьного образования. Она необходима, так как происходит смена эпохи, и важно обновить содержание школьного образования. В обновлённой системе образования одной из важных задач обучения и воспитания в школе является воспитание всесторонне ...

Характеристика основ политехнического образования
Проблема политехнического образования не нова для отечественной педагогики. Она разрабатывалась Н.К. Крупской, П.П. Блонским, М.М. Пистраком, А.Г. Калашниковым, Н.К. Гончаровым, С.М. Шабаловым и др. В последние десятилетия проведены исследования, посвященные теоретико-методологическим аспектам поли ...

Меню сайта

Copyright © 2025 - All Rights Reserved - www.covereducation.ru