Обучение математике через решение задач означает такую организацию учебного процесса, при которой через задачи, через их решение реализуется триединая цель обучения (обучающая, развивающая и воспитательная цели).
Под обучающей функцией, понимаются те задачи которые направлены на формирование у школьников системы знаний, умений и навыков. Эти знания, умения и навыки могут быть предусмотрены программой или служить ее расширению и углублению на различных этапах ее усвоения.
Под воспитательными функциями задач понимают:
1) возбуждение и поддержание интереса к математике;
2) воспитание у школьников ответственного отношения к математике;
3) воспитание потребности умения учится математике.
Развивающие функции задач:
1) формирование умений эффективно в изучении математики при использовании методов научного познания, такие как: наблюдение, сравнение, противопоставление, анализ, синтез, обобщение и др.;
2) овладение элементарной логической грамотностью;
3) овладение умением выполнять умозаключения индуктивного и дедуктивного характера;
4) умение правильно ставить мыслительный и/или практический опыт, выдвигать гипотезы, проверять их;
5) умение осуществлять выбор средств и методов для достижения поставленной цели, учитывая конкретные условия;
6) умение переводить простейшие ситуации жизненного характера на математический язык.
В соответствии с этим задачи в процессе обучения выступают как средство организации и управления учебно-познавательной деятельностью школьников на различных ее этапах: репродукция, эвристика, исследование.
Задачи играют большую роль и в формировании мышления. Советский психолог О.К. Тихомиров так охарактеризовал связи между решением задач и мышлением «мышление психологически выступает как деятельность по решению задач». Таким образом, можно утверждать, что решение текстовых задач позволяет более эффективно формировать мышление школьников.
Задачи в школьном курсе также выступают как средство связи теории с практикой, что соответствует одному из дидактических принципов обучения, а именно принципу прикладной направленности обучения.
Каждая задача в определенном месте учебного процесса может выполнять различные функции. Например, одна и также задача может выполнять функцию мотивации при введении нового математического понятия. Также эта задача может служить демонстрацией логики рассуждений и образцом оформления условия и решения. Эту же задачу можно применять для отработки навыка в решении задач под руководством учителя, а также при самостоятельном решении ее учеником. Задача может нести функции контроля знаний и умений. Задача может развивать творчество учащихся, если задача предполагает несколько способов решения.
2. Этапы решения текстовой задачи
В школьном образовании текстовые задачи всегда занимали особое место. Ещё задолго до нашей эры в Древнем Египте, Вавилоне, Китае, Индии были известны разнообразные методы решения текстовых задач.
Текстовая задача представляет собой словесную модель ситуации, явления, события, процесса и т.п. Как в любой модели, в текстовой задаче описывается не все событие или явление, а лишь его количественные и функциональные характеристики. Основная особенность текстовых задач состоит в том, что в них не указывается прямо, какое именно действие (или действия) должно быть выполнено для получения ответа на требование задачи. Задачи в обучении выступают в процессе обучения и средством стимулирования и мотивации учебно-познавательной деятельности школьников. В своей работе мы рассматриваем текстовые задачи, которые могут способствовать активизации познавательной деятельности учащихся на уроке, для этого были подобраны задачи с необычным содержанием, задачи в стихах, нестандартные методы решения задач.
Существуют различные методы решения текстовых задач: арифметический, алгебраический, геометрический, логический и др.
Решить задачу арифметическим методом – значит найти ответ на требование задачи посредством выполнения арифметических действий над числами. Одну и ту же задачу можно решить различными арифметическими способами.
Решить задачу алгебраическим методом – это значит найти ответ на требование задачи, составив и решив уравнение или систему уравнений. Одну и ту же задачу можно также решить различными алгебраическими способами. Задача считается решенной различными способами, если для ее решения составлены различные уравнения или системы уравнений, в основе составления которых лежат различные соотношения между данными и искомыми.
Решить задачу геометрическим методом – значит найти ответ на требование задачи, используя геометрические построения или свойства геометрических фигур.
Прочие статьи:
Выбор как деятельность
Одним из наиболее ярких представителей деятельностного подхода к выбору является Д.А. Леонтьев. Он рассматривает выбор как внутреннюю деятельность, основывающуюся на способах, приемах, орудиях, операциях, развитие которых обеспечивает возможность обучения процессу выбора. Именно это утверждение и о ...
Выявление уровня развития словаря детей
Цель: подобрать диагностирующие методики и выявить уровень развития словаря детей 6–7 лет. Задачи: Подобрать методику, соответствующую условиям нашего эксперимента. Провести диагностическое обследование детей 6–7 лет, направленное на выявление уровня развития словаря. Из всего многообразия диагност ...
Самоанализ уроков истории
Наш урок начался со звонком, класс построился на начало урока и поприветствовали меня стоя после приветствия учащихся мной. Командир класса Иванова Анастасия доложила о количестве отсутствующих, и после этого я разрешил учащимся присаживаться. Взглядом провожу по учащимся, их внешнему виду и готовн ...