Применение занимательного задачного материала на уроках математики

Страница 8

Решение: условие задачи сводиться к системе

Следовательно, первый имел динария, а второй - динария.

6. Задача из сказки «1001 ночь» (ночь 458)

Стая голубей подлетела к высокому дереву. Часть голубей села на ветвях, а другая расположилась под деревом. Сидевшие на ветвях голуби говорят расположившимся внизу: «Если бы один из вас взлетел к нам, то вас стало бы втрое меньше, чем нас всех вместе, а если бы один ин нас слетел к вам, то нас с вами стало бы поровну». Сколько голубей сидело на ветвях и сколько под деревом?

Решение: если x и y – число голубей на дереве и под деревом, то по условию имеем

Ответ: 5 голубей на дереве и 3 голубя под деревом.

7. Задача Адама Ризе

Трое торгуют лошадь за 12 флоринов, но никто в отдельности не располагает такой суммой. Первый говорит двум другим: «Дайте мне каждый по половине своих денег, и я куплю лошадь». Второй говорит первому и третьему: «Дайте мне по одной трети ваших денег, и я приобрету лошадь». Наконец, третий говорит первым двум: «Дайте мне только по четвертой ваших денег, и лошадь будет моя». Теперь спрашивается, сколько денег было у каждого?

Решение: Пусть x, y, z – количество флоринов соответственно у первого, второго и третьего покупателей. Составим систему

Выразим в первом уравнении и подставим во второе уравнение

Теперь поставим x в первое уравнение, получим

Подставим x и z в третье уравнение и найдем y

Зная y, найдем x и z.

Ответ: , , – количество флоринов соответственно у первого, второго и третьего покупателей.

5. Задачи, решаемые с помощью составления квадратных уравнений

Для решения представленных здесь задач учащиеся должны предварительно уметь:

решать неполные квадратные уравнения;

решать полные квадратные уравнения;

решать приведенные квадратные уравнения;

находить ошибки в решенных уравнениях и исправлять их;

делать проверку.

1. Задача Бхаскары:

На две партии разбившись,

Забавлялись обезьяны.

Часть восьмая их в квадрате

В роще весело резвилась.

Криком радостным двенадцать

Воздух свежий оглашали.

Вместе сколько, ты скажешь,

Обезьян там было в роще?

Решение: если обозначим число всех обезьян через x, то задача сводится к решению квадратного уравнения

Прибавляя к обеим частям квадрат 32, будем иметь

После извлечения квадратного корня найдем

В данном случае, говорит Бхаскара, отрицательные единицы первой части таковы, что единицы второй части меньше их, а потому последнее можно считать и положительными и отрицательными, и получаем двойное значение неизвестного: 48 и 16.

Стандартное решение квадратного уравнения:

2. Задача Бхаскары

Сколько обезьян в стае, если квадрат пятой части, уменьшенной тремя, спрятался в пещере, и только одна осталась на виду, взобравшись на дерево?

Решение: задача сводиться к решению квадратного уравнения

Страницы: 3 4 5 6 7 8 9 10


Прочие статьи:

Подведение итогов работы. Отслеживание динамики
Контрольный эксперимент проводился той же методике "Исследование способности словообразования", что и констатирующий. Целью контрольного эксперимента было выявление повышения общего уровня словообразования в экспериментальной группе по сравнению уровнем словообразования на момент констати ...

Значение нестандартных уроков по предмету "Человеку и мир" в формировании личности младших школьников
Особенность здоровой психики ребенка - познавательная активность. Любознательность ребенка постоянно направлена на познание окружающего мира и построение своей картины этого мира. Ребенок, играя, эксперементирует, пытается установить причинно-следственные связи и зависимости. Он сам, например, може ...

Детская одаренность: трудности описания
Цель данной главы - показать сложившиеся в кругу психологов и педагогов представления о том, кто такой одаренный ребенок. В литературе, касающейся одаренности детей, постоянно переплетаются и сменяют друг друга две взаимоисключающие картины. Исследованию подвергаются одаренный ребенок в общем, как ...

Меню сайта

Copyright © 2019 - All Rights Reserved - www.covereducation.ru