8. Некто сказал своему другу: «Дай мне сто рупий, и я буду вдвое богаче тебя», на что последний ответил: «Если ты мне дашь только 10 рупий, я стану вшестеро богаче тебя». Спрашивается, сколько было у каждого?
Решение: Пусть у первого было рупий, а у второго рупий. Ясно, что первое условие будет выполнено. Имея в виду второе условие, находим
Следовательно, у первого было 140-100=40 рупий, у второго 70+100=170 рупий.
9. Купец, будучи должен 753 руб., попросил у того же заимодавца еще 303 руб. Последний согласился удовлетворить его просьбу на условии, чтобы весь долг был уплачен в течении 8 месяцев и притом так, чтобы должник, внеся к концу первого месяца некоторую сумму на покрытие части долга, ежемесячно увеличивал свой взнос на половину, т.е. уплатил бы во второй месяц полторы таких суммы, в третий месяц две таких же суммы, в четвертый две с половиной и т.д. Обсудив эти условия, купец согласился на них. Спрашивается, какую сумму должен он внести в первый месяц и сколько в каждый из следующих месяцев?
Решение:
Пусть к концу первого месяца купец должен внести x руб., тогда
(рублей)
2–ой месяц 48+24=72
3-ий месяц 48+48=96
4-ый месяц 48+48+24=120
5-ый месяц 48+48+48=144
6-ой месяц 48+48+48+24=168
7-ой месяц 48+48+48+48=192
8-ой месяц 48+48+48+48+24=216
10. Задача из «Курса алгебры» А.Н. Страннолюбского.
Два работника прожили у хозяина равное время; один из них получал по 15, а другой по 10 рублей в неделю. При окончательном расчете оказалось, что первый работник должен получить более второго именно на ту сумму, которую он забрал в течение работы, а забрал он сперва 4 руб., потом 3 руб., и наконец 7 рублей. Сколько продолжалась работа?
Решение:
Пусть x - число недель, в течении которых продолжалась работа, (15-10) разница в полученных деньгах, тогда:
(недели)
11. Отец завещал своего имения сыну и дочери; из оставшегося затем капитала 2500 руб. должны были пойти на уплату долга, а 3000 руб. в пользу вдовы. Как велик был оставленный отцом капитал и по скольку должны получить сын и дочь?
Решение: Обозначим оставленный отцом капитал через x, тогда
(руб.)
Сыну завещал
Дочери завещал
12. Некто на вопрос о возрасте двух его сыновей отвечал: «Первый мой сын втрое старше второго, а обоим им вместе столько лет, сколько было бы мне 29 лет тому назад; мне теперь 45 лет». Найти лета обоих сыновей.
Решение: Обозначим лета второго сына через x, тогда
4 года второму сыну
А первому (лет)
13. Задача Магницкого
Спросил некто учителя: «Скажи, сколько у тебя в классе учеников, так хочу отдать тебе в учение своего сына». Учитель ответил: «Если придет еще учеников столько же, сколько имею, и пол столько, и четвертая часть, и твой сын, тогда у меня учеников 100». Спрашивается, сколько было у учителя учеников?
Решение:
I способ (стандартное решение)
Пусть было x учеников. Составим уравнение
; (учеников)
II способ
Эту задачу Магницкий решает «фальшивым правилом» (или методом «двух ложных положений»), которому в своей «Арифметике» отводит особое место.
Прочие статьи:
Приемы формирования навыка правильного чтения
Одним из усло
вий успешного овладения навыком чтения является достаточное развитие пространственных и временных представлений. На подготовительном этапе дети учатся ориентироваться в пространстве путем осознания схемы собственного тела, правого и левого направлений, пространственных взаимоотношений ...
Задачи занимательного характера
В привитии детям интереса к урокам математики большую роль играют задачи занимательного характера. Такие задачи, как показывает практика, вносят в урок оживление, повышают интерес к знаниям, развивают воображение и память детей. Дети решают задачи такого вида с большим удовольствием. 1) Зайцы по ле ...
Психолого-педагогические аспекты применения различных художественных техник
в старшей дошкольной группе
дошкольный творчество изобразительное искусство Детство – это первая ступень человека, на которой начинается познание мира. Через конкретные живые образы природа вливается в живое существо миром красок, чувств, разнообразных форм и явлений. На этом важном жизненном этапе идет процесс интенсивного п ...