Применение занимательного задачного материала на уроках математики

Страница 6

Далее по формуле

Искомое число учеников:

Ответ: 36 учеников.

Метод «двух ложных положений» Сущность этого метода покажем на примере решения уравнения:

(1)

Для решения этого уравнения предположим, что искомое . Подставив x1 в уравнение (1), получим:

(2)

где n1 – первая ошибка правой части уравнения (1). Теперь предположим, что x=x2, тогда, подставив x2 в уравнение (1), получим:

(3)

Вычтем почленно из уравнения (2) уравнение (3) и получим:

(4)

Теперь обе части уравнения (2) умножим на x2 , а обе части уравнения (3) на x1 и затем почленно вычтем полученные уравнения:

(5)

Из уравнения (4) найдём a, а из уравнения (5) найдём b. Так как из исходного уравнения (1) , то получим:

Получили следующее правило, которое арабский автор сформулировал следующим образом:

«Возьми для неизвестного число, которое ты хочешь, назови его первое положение и поступай согласно условию задачи. Если оно подходит к условию, то это и есть неизвестное. Но если оно отклоняется в ту или иную сторону, назови разницу первым отклонением. Затем возьми другое число и назови вторым положением; если оно не удовлетворяет условию, то оно даёт второе отклонение. После этого умножай первое положение на второе отклонение и назови первым результатом; потом второе положение умножай на первое отклонение, это есть второй результат. Если оба отклонения в одно и то же время больше или оба меньше, дели разность двух результатов на разность двух отклонений; если дело обстоит иначе, дели сумму двух результатов на сумму отклонений, частное и есть искомое число».

14. Задача Этьенна Безу

По контракту работникам причитается по 48 франков за каждый отработанный день, а за каждый неотработанный день с них взыскивается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?

Решение: если x – число дней, отработанных работниками, то

Ответ: 6 дней отработали работники в течение 30 дней.

15. Каков возраст братьев?

Средний из трех братьев старше младшего на два года, а возраст старшего брата превышает сумму лет двух остальных братьев четырьмя годами. Найти возраст каждого брата, если вместе им 96 лет.

Решение: Первому брату x – лет, второму 2+x, а третьему x+2+x+4

Получим

Первому 22 года, второму 22+2=24 года.

Третьему 22+24+4=50 лет.

4. Задачи, решаемые с помощью составления систем линейных уравнений

В данном разделе представлены задачи, решение которых осуществляется с помощью составления систем уравнений. Для решения таких задач учащиеся должны уметь:

составлять буквенные выражения и формулы по условиям задач;

осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое;

выражать из формул одну переменную через остальные;

выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями;

выполнять тождественные преобразования рациональных выражений;

решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы.

Данные задачи подходят для изучения параграфа «Системы линейных уравнений». 1 и 2 задачи подходят для проверки полученных знаний учащимся при изучении данной темы. Первую задачу можно давать для проверки как домашнее задание, и на следующем уроке со всем классом разобрать эту задачу, причем это будет делать не учитель, а ученик у доски. Задача под номером два может пойти как самостоятельная работа (проверка знаний, умений, навыков по пройденной теме), она систематизирует и обобщает весь пройденный материал по данной теме. Задачи под номерами 3, 4, 7 могут быть использованы при введении нового материала, в частности задача № 3 позволяет сразу активизировать познавательную деятельность учащихся из-за нестандартного изложения, но, в то же время, она проста для понимания и интересна ученикам. Задачи под номерами 5, 6 лучше использовать при закреплении изученного материала.

Страницы: 1 2 3 4 5 6 7 8 9 10


Прочие статьи:

Основные моменты системы правового воспитания в школе
Воспитание и самовоспитание соучастников образовательной деятельности снова становится актуальной общественной проблемой развития современной системы образования. Однако, традиционное для нашей школы понимание воспитания как целенаправленного воздействия на человека, прививающего ему потребные обще ...

Особенности социального развития дошкольников с ЗПР
Дети с ЗПР составляют в настоящее время почти четвертую часть детской популяции. Безболезненное включение таких детей в широкую социальную жизнь возможно только при активном решении ряда задач психолого-педагогической науки и практики, охватывающих как общегуманистические, так и гражданские и антик ...

Особенности психологических познавательных процессов младшего школьника
Основной особенностью младших школьников является слабость произвольного внимания, поэтому требуется близкая мотивация. Ребенок может долго сосредотачиваться на неинтересной или трудной работе ради результата, который ожидается в будущем. Значительно лучше в младшем школьном возрасте развито непрои ...

Меню сайта

Copyright © 2026 - All Rights Reserved - www.covereducation.ru